
http://www.revistadechimie.ro REV. CHIM. (Bucharest) ♦ 66 ♦ No. 11 ♦ 20151826

Optimizing Parallel Electronic Structure Calculations

Through Customized Software Environment
Study of GPAW on Small HPC Clusters

STEFAN GABRIEL SORIGA1, PETRICA IANCU1*, ISABELA COSTINELA MAN2,3, GEORGE MARTON1, VALENTIN PLESU1

1University Politehnica of Bucharest, Centre for Technology Transfer in Process Industries (CTTPI), 1, Gh. Polizu Str., Bldg A,
Room A056, 011061, Bucharest, Romania
2 Romanian Academy, ‘C.D. Nenitescu’, Center of Organic Chemistry, 202 Splaiul Independentei 060023, Bucharest, Romania
2 University of Bucharest, Faculty of Chemistry, 3-7 Polizu Str., 011061, Bucharest, Romania

 In this work focus on optimization the density functional theory (DFT) code GPAW on two high performance
computing (HPC) clusters, for office use, for large solid system, namely MgO(001) solid surface is described.
In this respect, different ways of building GPAW in HPC environments for best integration with the hardware
architecture, aimed to optimize the overall performance, and some practical solutions are presented. Two
computational platforms with different hardware architecture are considered. For each of them, in order to
obtain the best performing solution, some software environments on which to build GPAW application are
investigated. Another relevant factor taken into account configurability easiness, keeping an eye on reducing
the development effort while achieving the same performance. The tests with MgO(001) surface, modeled
using (4X4) unit cells with four atomic layers thickness, and 36 atoms per layer, revealed the best integration
of GPAW application with hardware architecture considered.

Keywords - HPC small-clusters; GPAW; molecular modeling optimization; customized environment

* email: p_iancu@chim.upb.ro

The recent advances in hardware and their availability
as cheap and commodity components together with the
availability of right software tools encourage the
development of small-sized high performance computing
(HPC) clusters designed for office use. Academic
institutions use small clusters in search for efficient
hardware resource usage and lower energy consumption.
This kind of cluster is a cheap alternative to traditional,
specialized supercomputing platforms, capable of
supporting the needs of a small research group. Generally,
it has two to four computing nodes, one of them being the
head node too. Power and cooling requirements do not
exceed facilities found in a typical office environment.
Standard power receptacle and residential-grade air
conditioning are easily sufficient for optimal operation.
Custom build chassis with straight airflow design reduce
the heat and noise to levels lower than many workstations
[1].

On top of the hardware is the cluster system software. The
cluster system software describes the collection of programs
used in configuring and maintaining individual nodes, together
with the software involved in submission, scheduling,
monitoring, and termination of parallel jobs [2]. A second
software layer is the system software. The system software
includes per node software such as operating system, system
libraries and compilers. Together, the cluster and system
software may present very different software environments
on which to build parallel numerical libraries and applications,
and require a certain level of customization if they are to achieve
an adequate level of performance.

Extensive studies were carried out on performance of GPAW
[3] software on massively parallel supercomputers [4]. In our
study the main goal of this paper is to present an exhaustive
analysis of several sets of system software, compiler suites,

and numerical libraries used to set up the GPAW software
environment for a large solid surface system, exemplified on
a large MgO (001) unit surface, for maximizing the
performance on small HPC clusters.

Another goal is to provide the reader with estimation on the
performance - in terms of maximum speedup, and to give an
idea on the way the components of the running environment
are glued together particularly for this large solid surface and
which can be extended to other similar systems.

The steps taken into consideration for implementation and
evaluation of several application build environments aim to
improve the performance of parallel structure calculations on
clusters designed for office use. Special attention is given to
the computing platform description, underlying hardware and
software configuration of the clusters. The investigation of
performance is largely developed, revealing the experimental
results obtained for each architecture set-up. The conclusions
underline that the best solution for AMD cluster improves the
performance with 35% compared to base case, and for Intel
cluster the improvement is 15% compared to base case.

Grid-Based Projector-Augmented Wave Application
GPAW [3] is a popular, open-source program for ab-initio

simulations of nanostructures based on Density-Functional
and Time-Dependent Density-Functional Theory. The code is
based on Projector-Augmented-Wave method and uses a real-
space grid representation of the electronic wave functions.
GPAW is coded in Python with extensions written in C for
performance critical parts, and uses MPI programming model
for parallel execution. MPI is used both within and between
nodes. OpenMP is not supported, only threading. The code is
build upon the Atomic Simulation Environment (ASE), a set of
modules to facilitate setting up, running and analyzing atomic
calculations, and NumPy, a Python library for manipulating

REV. CHIM. (Bucharest) ♦ 66 ♦ No. 11 ♦ 2015 http://www.revistadechimie.ro 1827

multidimensional arrays of numbers. For linear algebra
operations it uses BLAS, LAPACK, ScaLAPACK, BLACS, FFTW
(for fast plane-wave based calculations). GPAW (version 0.10.
0.11364) has the following requirements: Python 2.6 - 2.7;
NumPy 1.3.0 or later (multithreading in Numpy is not supported
by GPAW); Atomic Simulation Environment (ASE); C
compiler; Libxc (> 2.0.1); BLAS and LAPACK/ScaLAPACK
libraries (multi-threading is not supported); An MPI library
(required for parallel calculations); HDF5 (> 1.8.0) library for
parallel I/O and for saving files in HDF5 format; SciPy 0.7.0 or
later (required for transport of response calculations); Atomic
PAW-setups package.

BLAS, LAPACK, and ScaLAPACK are numerical libraries.
BLAS (Basic Linear Algebra Subprograms) routines are a de
facto standard API for linear algebra libraries. These libraries
contain common mathematical operations such as root
finding, matrix inversion, and solving systems of equations.
Netlib [5] provides a reference implementation of BLAS
written in Fortran 77 but without any attempt at optimizing
performance. ATLAS (Automatically Tuned Linear Algebra
Software) and OpenBLAS are two highly efficient machine-
specific implementations of BLAS library. Netlib CBLAS is the
reference C interface to the BLAS, although it is also possible
to call the Fortran BLAS from C. BLACS (Basic Linear Algebra
Communication Subprograms) is a set of routines that
implement low-level matrix and vector operations on
distributed memory platforms. It can use different
communication interfaces including MPI. BLAS exploit vector
and hierarchical memory architectures to the greatest extent.
For this reason it is widely used by LAPACK (Linear Algebra
Package), a well-known linear algebra package. LAPACK
provides routines for solving systems of linear equations and
linear least squares, eigenvalue problems, and singular value
decomposition. In also includes routines to implement the
associated matrix factorization such as LU, QR, Cholesky and
Schur decomposition. LAPACK was designed to effectively
exploit the caches on modern architectures, and thus can run
very fast given a well-tuned BLAS implementation. LAPACK
has also been extended to run on distributed-memory systems
in packages such as ScaLAPACK (Scalable LAPACK).
ScaLAPACK provides high performance linear algebra routines
specifically designed for parallel-distributed memory
platforms. It uses explicit message passing for interprocessor
communication, so it is portable on any computer that supports
MPI. ScaLAPACK solves dense and banded linear systems,
least squares problems, eigenvalue problems, and singular
value problems. ScaLAPACK depends on PBLAS operations.
PBLAS (Parallel BLAS) is an implementation of BLAS intended
for distributed memory architectures. As of version 2.0 the
ScaLAPACK code base directly includes PBLAS and BLACS.

HDF5 is a data model, library, and file format for storing and
managing data. It supports a large variety of data types, and is
designed for flexible and efficient I/O and for high volume and
complex data.

Libxc is a library of exchange-correlation functionals for
density-functional theory written in C and has Fortran bindings,
released under the LGPL license. It can be a performance
bottleneck for small systems.

Compilers and libraries
When compiling programs under Linux x86_64 platforms

we have the choice between several solutions:
·GNU toolchain: the standard compiler and libraries of Linux

world: GCC, G++, gfortran, libc;
·Intel toolchain: the Intel compilers and libraries from Intel

Parallel Studio XE non-commercial: ICC, ICPC, ifort, Math Kernel
Library (MKL);

·AMD toolchain: the AMD compilers and libraries: opencc,
openCC, openf95, AMD Core Math Library (ACML);

The GNU toolchain offers robust portability of code intended
for compilation in Linux, while the Intel and AMD toolchains
should offer a substantial performance increase over GNU
when used on their corresponding vendor hardware.
Depending on the code and the hardware architecture, each
of these toolchains may offer better performance than the
other.

MKL and ACML are numerical libraries. Processors vendors
develop highly tuned implementations of numerical libraries.
These libraries are design and optimized for particular processor
type. Intel Math Kernel Library (MKL) for Intel processors and
AMD Core Math Library (ACML) for AMD processors are
examples of such implementations. The Intel MKL is a library
of highly optimized, extensively threaded math routines. It
contains an implementation of BLAS, BLACS, LAPACK and
ScaLAPACK, Fast Fourier Transforms (FFT) complete with
FFTW interfaces, Sparse Solvers, Vector Math Library and
Vector Random Number Generators. The ACML incorporates
BLAS (including Sparse Level 1), LAPACK, FFT, and a set of
Random Number Generators (RNG) routines that are designed
for performance on AMD platforms. Intel MKL has a proprietary
license, but you can get one for free for non-commercial use.
Although ACML has a proprietary license, the library is
distributed in binary form free of charge.

Computing platforms description
The following two systems, located at the Center of

Organic Chemistry C.D. Nenitescu in Bucharest, are used
for the experiments presented in the following sections.

2-node Intel Nehalem cluster
The first cluster designed for office use has two dual-

processor motherboards, each holding two Intel Xeon E5520
(Nehalem) Quad-core processors running at 2.26 GHz. Both
motherboards are mounted in the same case, and essentially
there are two machines inside. One being the master and the
other the slave, connected together using a short gigabit
Ethernet network cable. The master node has: 2 Intel Xeon
E5520 quad-core @ 2.26 GHz processors; 16 GB DDR3
Registered ECC RAM @ 1333 MHz; 2 x 500 GB Serial-ATA2
hard drive, 7200 RPM disks connected with a RAID controller
equipped with 64 MB RAM cache memory (disks configured
with RAID mirroring and striping for additional security and
faster I/O); 1 Gb/s gigabit Ethernet connection used as the
internal connection for the machines; 1 Gb/s Ethernet
connection for external communication. The slave node
has the same features except that it lacks the network
card for the external communication and the video card.
When bought, this cluster was running a version of CentOS
5 as operating system. As a way to improve performance
we replaced the original operating system and cluster
system software. Now, the cluster is running CentOS 7
operating system and the job management (HPC
scheduling) is performed by open-source Torque resource
manager with Maui as scheduler.

4-node AMD Interlagos cluster
The second cluster designed for office use is composed

of four dual-processor motherboards, each holding two
AMD Opteron (Interlagos) 12-core processors running at
2.4 GHz. The motherboards are mounted in the same case,
and essentially there are four machines inside. One master
and three compute nodes; all connected together using an
in-case gigabit Ethernet switch. The overall configuration
has: 96 cores: 8 x 2.4 GHz 12-core Opteron processors;
192 GB DDR3 Registered ECC RAM @ 1600 MHz (2 GB/core);
8 TB Serial-ATA2 hard disk storage (7200 RPM disks, 64 MB

http://www.revistadechimie.ro REV. CHIM. (Bucharest) ♦ 66 ♦ No. 11 ♦ 20151828

cache, RAID mirroring and striping); 1 Gb/s gigabit Ethernet
for internal communication; 1 Gb/s external Ethernet
connection. This cluster is using the original operating system
(Centos 6.3) and cluster system software (Sun Grid Engine
parallel job queue and scheduler manager).

Performance evaluation
To select the most suitable implementation of GPAW for

the cluster architecture, in the following paragraphs we
compare instances of GPAW build with open-source tools
and various numerical libraries against versions build with
tuned vendor specific ones for the large solid surface system
MgO (001) shown in figure 1.

you do not get the most efficient configuration. This was our
case, too. If someone just downloads the GPAW sources and
wants to build them, he will have to disable ScaLAPACK and
HDF5 support, because these packages are not part of the
CentOS 7 distribution. In order to have a complete installation
of GPAW, besides what is included in the distribution, you have
to compile and build Libxc, HDF5, and to set up ASE and GPAW-
Setups. Moreover, if you want to run GPAW in parallel you have
to install a message passing interface implementation. In Linux
community, open-source versions of MPI are well known and
primarily used instead of proprietary libraries. OpenMPI has
become the first free choice for MPI on Linux. After all these
dependencies are met, the default configuration of GPAW will
use Netlib versions of BLAS and LAPACK mathematical
libraries. Although it is known that Netlib reference
implementations should not be used for production because
will not usually perform at maximum on many computing
environments. A step toward improving performance is to build
GPAW with the BLAS and LAPACK versions provided by the
ATLAS (version 3.8.4) library included in the distribution. This
library is not optimized for any specific platform. So we took
another step and rebuilt ATLAS with the particular settings of
the processors found in the system. We did this step, and in
the same time we used the latest version of ATLAS (3.10.2).
New versions of packages are consistently being improved.
The drawback is that to use the latest version of ATLAS you
need to build it from source. Once taken on “building from
source” road, we compiled from source another high
performance open-source library: OpenBLAS. Table 1 shows
the versions of GPAW obtained using mainly packages within
repositories (ATLAS 3.10.2 and OpenBLAS are the exceptions)
and compiled with the default GNU tool chain. Figure 2 shows
the performance comparison between the different custom
versions of GPAW. The best performance is obtained when
running the OpenBLAS version of the code. Compare these
numbers with those obtained with Netlib reference
implementation of BLAS and LAPACK: 7096.362 seconds for
1 node and 4391.082 seconds for 2 nodes. The original BLAS
and LAPACK implementations give very poor performance
compared to optimized implementations. We outline the fact
that in these configurations the software stack - Python,
NumPy, SciPy, is part of the CentOS 7 distribution.

We compiled from source using the default GNU toolchain
ATLAS 2.10.2, OpenBLAS, OpenMPI, Libxc, and HDF5. ASE
and Gpaw-Setups do not need compilation, only the
declaration of two environment variables. These versions of
GPAW are very easy to obtain and you keep maximum
compatibility with the rest of the system.

Another step toward improved execution time is to rebuild
the whole software stack required by GPAW or to use vendor-
optimized numerical libraries. We followed both directions.
We built everything starting with numerical libs, NumPy, SciPy,
and ScaLAPACK using different compiler suites. There are a

The MgO (001) surface is modeled using a (4x4) surface
unit cell with a thickness of four atomic layers, corresponding
to a cell side length of 12.930 Ao with 36 atoms per layer. Ao

vacuum region of 14 Ao separates the periodic repeated
images. In the calculation we used a grid spacing of h = 0.2 Ao

(64x64x102 grid points) and Γ point sampling of the Brillouin
zone. A single point total energy calculation of the optimized
cell is done using RPBE [7] exchange correlation functional
for 44 SCF iterations using Davidson eigensolver. It was chosen
the default parallelization and because we perform a gamma
point calculation the processors are used only for domain
decomposition (the decomposition is done with number of
cores).

This application was run on both clusters. The problem size
was kept constant between all runs. We selected only one
application to test the different versions of GPAW. This job is
illustrative enough for the applications we usually run on these
clusters. The results presented in this section focused on the
execution time of GPAW as reported by the “Total” field in the
text report output by the code.

2-node Intel Nehalem cluster
On Nehalem cluster we start from a clean install of CentOS

7. GPAW was not ported on this distribution yet and we have
to build GPAW manually. Manually building GPAW requires
that you first set up the build environment and install the
required development tools and libraries. We first compiled
GPAW using the software environment provided by the
distribution. The versions of the packages available in the
repositories meet GPAW requirements. Using software
associated with a particular distribution is the easiest way to
keep your system up-to-date with latest patches, but usually

Fig. 1. Side view of MgO (001)
surface cell used in

calculations

Table 1
GPAW WITH GNU TOOL CHAIN

PROVIDED BY CENTOS 7
DISTRIBUTION

REV. CHIM. (Bucharest) ♦ 66 ♦ No. 11 ♦ 2015 http://www.revistadechimie.ro 1829

number of possible combinations of compilers and libraries,
from which we choose the following:

·GNU ATLAS - meaning the GNU toolchain and ATLAS
mathematical library. This is a complete open-source software
stack.

·GNU ACML. We intended to build a version of GPAW using
AMD opencc compiler and ACML library, but the opencc failed
to build NumPy, so we used GCC.

·INTEL. This means we built the whole software stack with
the Intel compilers and libraries. More specifically, we used
the Intel Parallel Studio 2013 SP1 Update 3 Suite.

Table 2 shows the new four versions of GPAW. We compiled
every package required by GPAW except Python. To be able
to use the ACML with NumPy, you need to have the CBLAS
module, so we build CBLAS from source. For GNU ATLAS,
NumPy and SciPy were compiled with UMFPACK and FFTW
(besides BLAS and LAPACK libraries provided by ATLAS).
UMFPACK is a collection of C functions for solving unsymmetric
sparse linear systems, and it requires AMD (Approximate
Minimum Degree ordering), a set of routines for ordering a
sparse matrix prior to Cholesky factorization. Each version of
GPAW was tested for correctness by running the GPAW self-
tests. The self-test suite comprises 239 tests, sampling most
features of the code. We run the test in parallel, using four
cores. Because -O3 optimization level breaks a number of
GPAW self-tests, we used the less aggressive -O2 optimization
level for GPAW and -O3 for every other package. However, in
our tests the lower optimization level didn’t have any impact
on performance.

After rebuilding GPAW with the configurations shown in
table 2 we re-ran our application using the different versions of
GPAW. Figure 3 shows the results. There is only a small
difference between performance of vendor made and open-
source implementations of the numerical libraries. The GNU
ATLAS execution times, although better than the initial versions
are still greater than those obtained with the OpenBLAS
version. The speedup of the version based on ATLAS have
increased only slightly such that the GNU ATLAS version is

now up to 10% faster than the GPAW build with ATLAS 3.10.2
and CentOS 7 software environment. For OpenBLAS version
the execution time is almost identical to our original results
(fig. 3), and it remains the best performing open-source library.
In fact, looking at the results of ten iterations of the application,
we observed that the version of GPAW based exclusively on
OpenBLAS is a little slower than the initial version. Remember
that the initial OpenBLAS version was based on the packages
provided by distribution and only GPAW was built with
OpenBLAS. In that initial case NumPy package was using
ATLAS library for BLAS. It looks like a combination of NumPy-
ATLAS and GPAW-OpenBLAS is the best performer for open-
source based versions, and even overall. It is true that the best
performance on the Intel Nehalem cluster was obtained with
INTEL version, with an execution time of approximately 16
minutes for 1 node and 12 minutes for 2 nodes. But compare
these execution times with 16.4 and 12.65 min for OpenBLAS
version. We may say the performance it is identical.

To investigate how Python influences the performance of
GPAW, we rebuilt Python from sources using the ICC compiler
and obtained a complete version of INTEL. Although in our
Python benchmarks there was a speedup of 12%, there is
little to no difference in performance between version which
used Python and that who not. In conclusion, the performance
that can be attained for BLAS operations is the key factor that
determines the global performance of applications.

The best performance on the Intel cluster was obtained
with the INTEL version, but OpenBLAS can be a good
candidate when you don’t want to use a proprietary toolchain
or need a faster and easy to build version.

OpenBLAS is the easiest way of compiling GPAW on
CentOS 7. INTEL version requires manually building the whole
software stack. On CentOS 7, at a cost of 3% performance
loss you can build from source only OpenBLAS, ScaLAPACK,
and GPAW.

Fig. 2. Performance of GPAW versions build with default GNU tool
chain and open-source mathematical libraries

Fig. 3. Performance of GPAW versions built from scratch with
different toolchains on Intel Nehalem cluster

Table 2
HEAVY CUSTOMIZED GPAW VERSIONS

http://www.revistadechimie.ro REV. CHIM. (Bucharest) ♦ 66 ♦ No. 11 ♦ 20151830

4-node AMD Interlagos cluster
We had a more difficult task in building GPAW on the AMD

Interlagos cluster. AMD platform runs CentOS 6.3 distribution
and we cannot upgrade it because of other computational
chemistry applications. We first installed GPAW from dtufys
[8] repository using the software package manager. This is
the preferred way to install GPAW on a supported Linux system.
But the performance of this version is much slower than any
of the versions of GPAW tested on the Intel cluster. See table 3
for a quick view of the actual timings of dtufys version on 1
node on AMD cluster and INTEL version on Intel cluster. The
execution time is much longer on AMD one node than on Intel
one node even if the number of cores on node is much larger
than on Intel. By decreasing the number of cores to eight the
execution time it will increase as it will be shown later.

release 2 (devtoolset-2) [6]. The devtoolset-2 includes new
versions of C, C++ and FORTRAN compilers and associated
runtimes (GCC and gfortran version 4.8.2, the same version
CentOS 7 provides). Besides the new features needed by ACML
libraries, newer GCC versions can include better support for
the processor instruction set, which might influence the
performance in a positive way. Although it is expected that
this improvement is generally only marginal. But we still
encountered a problem, that is, devtoolset-2 does not ship the
required version of FORTRAN library.

So, in the end we had to rebuild GCC 4.8.2 from source; a
long and tedious task. Figure 4 gives the corresponding
performance results obtained on the AMD Interlagos cluster.
It is obvious that all of these GPAW versions outperform dtufys
version by a great margin and that GNU ACML and INTEL
versions are the best performers. Still, the best performance
on the AMD cluster was obtained with the GNU ACML version.
The execution time for 1 node was 561.206 seconds.
Comparing this with the best performance obtained with the
dtufys version (4393.292 seconds) we find that the GNU ACML
is around 8 times faster than dtufys version. Even the GNU
ATLAS version is around 7 times faster than dtufys version.
This made us to check the dependencies on which the dtufys
version was build. We found that dtufys version, although it
uses the LAPACK library from ATLAS, is built on the Netlib
version of BLAS. This clearly illustrates the importance of BLAS
in GPAW calculations.

AMD Interlagos cluster has four nodes, thus up to 96 cores
can be involved in calculation. The data from table 5 show
that the speedup increase considerably until it gets to 24 cores
(1 node). The execution time is calculated relative to the
longest execution time achieved on two cores. At 32 cores
the speedup remains the same while for 2 nodes (48 cores)
increase slightly than keeps being constant for 64 and 72 cores.
On 96 cores the execution time decrease and is the same as
on 16 cores. On 24 cores is obtained the best ratio between
the number of cores and execution time, which is an indication
that the domain decomposition is a reliable one. Definitely

Table 4
HEAVY CUSTOMIZED GPAW VERSIONS

Table 3
THE EXECUTION TIME (IN SECONDS) OF DTUFY VERSION OF GPAW

ON INTERLAGOS AND OF THE INTEL VERSION ON NEHALEM

We decided to do a developer installation. There is no easy
way of building GPAW on AMD cluster. All the packages
required by GPAW were outdated, and we had to build the
whole stack: Python, BLAS, LAPACK, NumPy, SciPy, and
ScaLAPACK with their latest versions. We choose to implement
four custom versions: GNU ATLAS; GNU ACML; INTEL; GNU
MKL. Table 4 shows the software environment. We had to
compile each of those packages from scratch using two
different compilers, GNU and Intel. Like in Nehalem cluster
case, we used -O3 optimization level for every other package
except GPAW. Because ACML libraries cannot be built with
the GNU toolchain found in CentOS 6.3 (C and Fortran
compilers version 4.4.7), we had to use Developer Toolset

Fig. 4. Performance of GPAW versions built from scratch with different
toolchains on AMD Interlagos cluster

Table 5
EXECUTION TIME DEPENDING ON THE NUMBER OF CORES

REV. CHIM. (Bucharest) ♦ 66 ♦ No. 11 ♦ 2015 http://www.revistadechimie.ro 1831

more testing is required to identify all aspects related to different
contributions and operations that can affect the performance
characteristics such as the use of different eigen-solvers or
how different operations are affected by libraries.

The performance of a similar HPC cluster was optimized
with different software application [9], [10].

Conclusions
In summary, we discussed the influence of software building

environment on the performance of a molecular modelling
program. Our work in optimizing the performance of GPAW
for small HPC clusters designed for office use through
customized build environment has resulted in a total speedup
of 15% compared with the initial version of the application for
Intel Nehalem cluster (we consider ATLAS 3.8.4 as the default
GPAW version for Intel cluster), and 35% for AMD Interlagos
for our system used for testing, namely a large surface
MgO(001). For Intel processors we have expected the
optimization capabilities of GNU compilers to be much worse
than these of Intel compilers. But the Intel compilers do not
offer a substantial performance increase over GCC. For these
versions of compilers, plus the level of optimization used and
this kind of platforms, the difference is not so high. On the
other side, the optimizations added to this version of
OpenBLAS are obvious. At least for Intel Nehalem architecture,
the performance is comparable with that of Intel MKL. For
AMD platform, there is no significant difference between using
GNU and Intel toolchains. Overall it is true that vendor
optimized software tools have the best performance when
used on their correspondent platform. In our case, this is more
obvious on the AMD cluster, although we used only the vendor
mathematical libraries because the AMD compiler does not
build some essential programs required by GPAW. But on the
Intel cluster, the OpenBLAS version of GPAW is a lot easier to
build at almost the same performance with the version based
exclusively on Intel suite.

Acknowledgments: ªTEFAN GABRIEL ªORIGA’ WORK HAS BEEN FUNDED BY THE SECTORAL

OPERATIONAL PROGRAMME HUMAN RESOURCES DEVELOPMENT 2007-2013 OF THE MINISTRY

OF EUROPEAN FUNDS THROUGH THE FINANCIAL AGREEMENT POSDRU/159/1.5/S/134398.
Isabela Costinela MAN acknowledges for the support of the Romanian
National Authority for Scientific Research, CNCS-UEFISCDI under project
number PN-II-RU-PD-2012-28/26.04.2013.

References
1. ***Turnkey Computational Chemistry, http://www.pqs-chem.com/
machines.php, consulted 3.07.2015.
2. DESAI, N.L., BRADSHAW, R., LUSK, A., LUSK, E.L., MPI Cluster
system Software, Recent advances in Parallel Virtual Machine and
Message Passing Interface, Springer, 2004, p. 277.
3. ENKOVAARA, J., ROSTGAARD, C., MORTENSEN, J.J., CHEN, J., J.
Phys.: Condens. Matter., 22, no. 25, 2010, p. 253202.
4. ROMERO, N. A., GLINSVAD, C., LARSEN, A. H., ENKOVAARA, J.,
SHENDE, S., MOROZOV, V. A., MORTENSEN, J. J., Concurrency and
Computation: Practice and Experience, 27, no. 1, 2015, p.69.
5. ***Netlib Repository, http://www.netlib.org, consulted 3.07.2015.
6. ***Developer Toolset 2, http://people.centos.org/tru/devtools-2/
readme, consulted 3.07.2015.
7. HAMMER, B., HANSEN, L.B., NORSKOV, J.K., Physical Review B
Condensed Matter, 59, no. 11, 1999, p. 7413.
8. ***Installation with package manager on Linux, https://
wiki.fysik.dtu.dk/ase/download.html#installation –with-package-
manager-on-linux, consulted 3.07.2015.
9. ªORIGA, ª.G., PLEªU, V., MARTON, A., BONET-RUIZ, J., MARTON,
G.I., IANCU, P., Small computer cluster for Molecular Modelling,
Rev.Chim.(Bucharest), 65, no. 8, 2014, p.960.
10. MARTON, G.I., MARTON, A.I., PLEªU, V., IANCU, P., ªORIGA, ª.G.,
TAME – A Quantum mechanics study of the reaction mechanism for
methoxylation of isoamylenes, Rev. Chim.(Bucharest), 66, no.10,
2015, p. 1711

Manuscript received: 10.08.2015

